Theoretical analysis and experimental verification for sizing of flapping wing micro air vehicles
نویسندگان
چکیده
To design efficient flapping wing micro air vehicles (FWMAVs), a comprehensive sizing method based on theoretical and statistical analyses is proposed and experimentally verified. This method is composed of five steps including defining and analyzing the MAV mission, determining the flying modes, defining the wing shape and aspect ratio of the wing, applying the constraint analysis based on the defined mission, and estimating the weights of the electrical and structural components the bio-inspired flapping wing micro air vehicle. To define the vehicle mission and flight plan, path analysis is performed based on the defined mission, the speed of cruise and turning, the turning radius and climatic conditions in the flight area. Following the defined mission analysis, the appropriate modes of flying for the flapping wing bird are recognized. After that, the wing shape and the wing aspect ratio are determined based on the defined flight modes. To estimate the wing loading, a constraint analysis is exploited. Along with the four listed steps, statistical method is employed to estimate the FWMAV weight. Based on the proposed method for wing sizing of flapping wings, a FWMAV named Thunder I has been designed, fabricated, and tested. This developed methodology is very beneficial by giving guidelines for the design of efficient bioinspired FWMAVs.
منابع مشابه
NUMERICAL ANALYSIS OF MAVs FLAPPING WINGS IN UNSTEADY CONDITIONS
Today, Flapping Micro Aerial Vehicles (MAV) are used in many different applications. Reynolds Number for this kind of aerial vehicle is about 104 ~ 105 which shows dominancy of inertial effects in comparison of viscous effects in flow field except adjacent of the solid boundaries. Due to periodic flapping stroke, fluid flow is unsteady. In addition, these creatures have some complexities in kin...
متن کاملDesign and Fabrication of Ultralight High-Voltage Power Circuits for Flapping-Wing Robotic Insects
Flapping-wing robotic insects are small, highly maneuverable flying robots inspired by biologicalinsects and useful for a wide range of tasks, including exploration, environmental monitoring, searchand rescue, and surveillance. Recently, robotic insects driven by piezoelectric actuators have achievedthe important goal of taking off with external power; however, fully autonomous operation requir...
متن کاملThe Scalable Design of Flapping Micro-Air Vehicles Inspired by Insect Flight
Here we explain how flapping micro air vehicles (MAVs) can be designed at different scales, from bird to insect size. The common believe is that micro fixed wing airplanes and helicopters outperform MAVs at bird scale, but become inferior to flapping MAVs at the scale of insects as small as fruit flies. Here we present our experience with designing and building micro flapping air vehicles that ...
متن کاملControl of Flapping-Wing Micro Air Vehicles
Most birds and many insects use periodic wing motion to propel themselves and maneuver. Most conventional flying machines are propelled by rotating machinery, achieve lift through rotating or fixed wings, and are controlled through the production of steady aerodynamic forces produced by rotors or movable wings. Many of the first powered flapping-wing micro air vehicles (MAVs) effectively replac...
متن کاملConceptual design of flapping-wing micro air vehicles.
Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these d...
متن کامل